On Solving the Direct/Inverse Cauchy Problems of Laplace Equation in a Multiply Connected Domain, Using the Generalized Multiple-Source-Point Boundary-Collocation Trefftz Method & Characteristic Lengths
نویسندگان
چکیده
In this paper, a multiple-source-point boundary-collocation Trefftz method, with characteristic lengths being introduced in the basis functions, is proposed to solve the direct, as well as inverse Cauchy problems of the Laplace equation for a multiply connected domain. When a multiply connected domain with genus p (p>1) is considered, the conventional Trefftz method (T-Trefftz method) will fail since it allows only one source point, but the representation of solution using only one source point is impossible. We propose to relax this constraint by allowing many source points in the formulation. To set up a complete set of basis functions, we use the addition theorem of Bird and Steele (1992), to discuss how to correctly set up linearly-independent basis functions for each source point. In addition, we clearly explain the reason why using only one source point will fail, from a theoretical point of view, along with a numerical example. Several direct problems and inverse Cauchy problems are solved to check the validity of the proposed method. It is found that the present method can deal with both direct and inverse problems successfully. For inverse problems, the present method does not need to use any regularization technique, or the truncated singular value decomposition at all, since the use of a characteristic length can significantly reduce the ill-posed behavior. Here, the proposed method can be viewed as a general Trefftz method, since the conventional Trefftz method (T-Trefftz method) and the method of fundamental solutions (F-Trefftz method) can be considered as special cases of the presently proposed method. 1 Department of Harbor and River Engineering, Computation and simulation center, Taiwan Ocean University, Keelung, Taiwan. Email: [email protected] 2 Department of Civil Engineering, National Taiwan University, Taipei, Taiwan 3 Department of Systems Engineering and Naval Architecture, Taiwan Ocean University, Keelung, Taiwan 4 Center for Aerospace Research & Education, University of California, Irvine, US 276 Copyright © 2010 Tech Science Press CMC, vol.17, no.3, pp.275-302, 2010
منابع مشابه
A Simple Multi-Source-Point Trefftz Method for Solving Direct/Inverse SHM Problems of Plane Elasticity in Arbitrary Multiply-Connected Domains
In this paper, a generalized Trefftz method in plane elasticity is developed, for solving problems in an arbitrary multiply connected domain. Firstly, the relations between Trefftz basis functions from different source points are discussed, by using the binomial theorem and the logarithmic binomial theorem. Based on these theorems, we clearly explain the relation between the T-Trefftz and the F...
متن کاملEngineering Analysis with Boundary Elements
In this paper, the inverse Cauchy problem for Laplace equation defined in an arbitrary plane domain is investigated by using the collocation Trefftz method (CTM) with a better postconditioner. We first introduce a multiple-scale Rk in the T-complete functions as a set of bases to expand the trial solution. Then, the better values of Rk are sought by using the concept of an equilibrated matrix, ...
متن کاملApplication of the Trefftz method, on the basis of Stroh formalism, to solve the inverse Cauchy problems of anisotropic elasticity in multiply connected domains
In this paper, the Trefftz collocation method is applied to solve the inverse Cauchy problem of anisotropic elasticity, wherein both tractions as well as displacements are prescribed at a small part of the boundary of an arbitrary simply/multiply connected anisotropic elastic domain. The Stroh formalism is used to construct the Trefftz basis functions. Negative and positive power series are use...
متن کاملNumerical solution of the Laplacian Cauchy problem by using a better postconditioning collocation Trefftz method
In this paper, the inverse Cauchy problem for Laplace equation defined in an arbitrary plane domain is investigated by using the collocation Trefftz method (CTM) with a better postconditioner. We first introduce a multiple-scale Rk in the T-complete functions as a set of bases to expand the trial solution. Then, the better values of Rk are sought by using the concept of an equilibrated matrix, ...
متن کاملOn Solving the Ill-Conditioned System Ax = b: General-Purpose Conditioners Obtained From the Boundary-Collocation Solution of the Laplace Equation, Using Trefftz Expansions With Multiple Length Scales
Here we develop a general purpose pre/post conditioner T, to solve an ill-posed system of linear equations, Ax = b. The conditioner T is obtained in the course of the solution of the Laplace equation, through a boundary-collocation Trefftz method, leading to: Ty = x, where y is the vector of coefficients in the Trefftz expansion, and x is the boundary data at the discrete points on a unit circl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010